Cryptosporidium and Toxoplasma Parasites Are Inhibited by a Benzoxaborole Targeting Leucyl-tRNA Synthetase
نویسندگان
چکیده
The apicomplexan parasites Cryptosporidium and Toxoplasma are serious threats to human health. Cryptosporidiosis is a severe diarrheal disease in malnourished children and immunocompromised individuals, with the only FDA-approved drug treatment currently being nitazoxanide. The existing therapies for toxoplasmosis, an important pathology in immunocompromised individuals and pregnant women, also have serious limitations. With the aim of developing alternative therapeutic options to address these health problems, we tested a number of benzoxaboroles, boron-containing compounds shown to be active against various infectious agents, for inhibition of the growth of Cryptosporidium parasites in mammalian cells. A 3-aminomethyl benzoxaborole, AN6426, with activity in the micromolar range and with activity comparable to that of nitazoxanide, was identified and further characterized using biophysical measurements of affinity and crystal structures of complexes with the editing domain of Cryptosporidium leucyl-tRNA synthetase (LeuRS). The same compound was shown to be active against Toxoplasma parasites, with the activity being enhanced in the presence of norvaline, an amino acid that can be mischarged by LeuRS. Our observations are consistent with AN6426 inhibiting protein synthesis in both Cryptosporidium and Toxoplasma by forming a covalent adduct with tRNA(Leu) in the LeuRS editing active site and suggest that further exploitation of the benzoxaborole scaffold is a valid strategy to develop novel, much needed antiparasitic agents.
منابع مشابه
Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase
Streptococcus pneumoniae causes bacterial pneumonia with high mortality and morbidity. The emergency of multidrug-resistant bacteria threatens the treatment of the disease. Leucyl-tRNA synthetase (LeuRS) plays an essential role in cellular translation and is an attractive drug target for antimicrobial development. Here we report the compound ZCL039, a benzoxaborole-based derivative of AN2690, a...
متن کاملAnalysis of the Resistance Mechanism of a Benzoxaborole Inhibitor Reveals Insight into the Leucyl-tRNA Synthetase Editing Mechanism.
A new class of antimicrobial benzoxaborole compounds was identified as a potent inhibitor of leucyl-tRNA synthetase (LeuRS) and therefore of protein synthesis. In a novel mechanism, AN2690 (5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole) blocks fungal cytoplasmic LeuRS by covalently trapping tRNA(Leu) in the editing site of the enzyme's CP1 domain. However, some resistant mutation sites are l...
متن کاملThe C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex.
Human cytosolic leucyl-tRNA synthetase is one component of a macromolecular aminoacyl-tRNA synthetase complex. This is unlike prokaryotic and lower eukaryotic LeuRSs that exist as free soluble enzymes. There is little known about it, since the purified enzyme has been unavailable. Herein, human cytosolic leucyl-tRNA synthetase was heterologously expressed in a baculovirus system and purified to...
متن کاملCP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function.
The amino acid discrimination by aminoacyl-tRNA synthetase is achieved through two sifting steps; amino acids larger than the cognate substrate are rejected by a "coarse sieve", while the reaction products of amino acids smaller than the cognate substrate will go through a "fine sieve" and be hydrolyzed. This "double-sieve" mechanism has been proposed for IleRS, a class I aminoacyl-tRNA synthet...
متن کاملTargeting Toxoplasma gondii CPSF3 as a new approach to control toxoplasmosis
Toxoplasma gondii is an important food and waterborne pathogen causing toxoplasmosis, a potentially severe disease in immunocompromised or congenitally infected humans. Available therapeutic agents are limited by suboptimal efficacy and frequent side effects that can lead to treatment discontinuation. Here we report that the benzoxaborole AN3661 had potent in vitro activity against T. gondii Pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 60 شماره
صفحات -
تاریخ انتشار 2016